Package: MRMCaov 0.3.0

MRMCaov: Multi-Reader Multi-Case Analysis of Variance

Estimation and comparison of the performances of diagnostic tests in multi-reader multi-case studies where true case statuses (or ground truths) are known and one or more readers provide test ratings for multiple cases. Reader performance metrics are provided for area under and expected utility of ROC curves, likelihood ratio of positive or negative tests, and sensitivity and specificity. ROC curves can be estimated empirically or with binormal or binormal likelihood-ratio models. Statistical comparisons of diagnostic tests are based on the ANOVA model of Obuchowski-Rockette and the unified framework of Hillis (2005) <doi:10.1002/sim.2024>. The ANOVA can be conducted with data from a full factorial, nested, or partially paired study design; with random or fixed readers or cases; and covariances estimated with the DeLong method, jackknifing, or an unbiased method. Smith and Hillis (2020) <doi:10.1117/12.2549075>.

Authors:Brian J Smith [aut, cre], Stephen L Hillis [aut], Lorenzo L Pesce [ctb]

MRMCaov_0.3.0.tar.gz
MRMCaov_0.3.0.zip(r-4.5)MRMCaov_0.3.0.zip(r-4.4)MRMCaov_0.3.0.zip(r-4.3)
MRMCaov_0.3.0.tgz(r-4.4-any)MRMCaov_0.3.0.tgz(r-4.3-any)
MRMCaov_0.3.0.tar.gz(r-4.5-noble)MRMCaov_0.3.0.tar.gz(r-4.4-noble)
MRMCaov_0.3.0.tgz(r-4.4-emscripten)MRMCaov_0.3.0.tgz(r-4.3-emscripten)
MRMCaov.pdf |MRMCaov.html
MRMCaov/json (API)
NEWS

# Install 'MRMCaov' in R:
install.packages('MRMCaov', repos = c('https://brian-j-smith.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/brian-j-smith/mrmcaov/issues

Datasets:
  • Franken - Multi-reader multi-case dataset
  • Kundel - Multi-reader multi-case dataset
  • VanDyke - Multi-reader multi-case dataset

On CRAN:

5.26 score 12 stars 1 packages 8 scripts 662 downloads 27 exports 34 dependencies

Last updated 2 years agofrom:d79e49bcef. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:binary_sensbinary_specbinormal_aucbinormal_eubinormal_sensbinormal_specbinormalLR_aucbinormalLR_eubinormalLR_sensbinormalLR_specDeLongempirical_aucempirical_euempirical_sensempirical_specjackknifemrmcOR_to_RMHparametersRMH_to_ORroc_curvessrmcstmctrapezoidal_auctrapezoidal_senstrapezoidal_specunbiased

Dependencies:clicolorspacecrayonfansifarverggplot2gluegtablehmsisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigprettyunitsprogressR6RColorBrewerrlangscalestibbletrustutf8vctrsviridisLitewithr

MRMCaov for R User Guide

Rendered fromUserGuide.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2023-01-12
Started: 2022-08-18

Readme and manuals

Help Manual

Help pageTopics
MRMCaov: Multi-Reader Multi-Case Analysis of VarianceMRMCaov-package MRMCaov
Covariance Methodscov_methods DeLong jackknife unbiased
Multi-reader multi-case datasetFranken
Multi-reader multi-case datasetKundel
Performance Metricsbinary_sens binary_spec binormalLR_auc binormalLR_eu binormalLR_sens binormalLR_spec binormal_auc binormal_eu binormal_sens binormal_spec empirical_auc empirical_eu empirical_sens empirical_spec metrics trapezoidal_auc trapezoidal_sens trapezoidal_spec
Multi-Reader Multi-Case ROC Analysismrmc
Convert Obuchowski-Rockette Parameters to Roe & Metz ParametersOR_to_RMH OR_to_RMH.data.frame OR_to_RMH.default
ROC Plotsplot plot.empirical_curve plot.empirical_curves plot.mrmc plot.roc_curve plot.roc_curves plot.roc_points plot.stmc
Print ROC Objectsprint.roc_curve print.roc_curves
Convert Roe & Metz Parameters to Obuchowski-Rockette ParametersRMH_to_OR RMH_to_OR.data.frame RMH_to_OR.default
ROC Performance Curvesmean mean.binormal_curves mean.roc_curve mean.roc_curves parameters parameters.mrmc parameters.roc_curve parameters.roc_curves parameters.stmc points points.empirical_curve points.empirical_curves points.roc_curve points.roc_curves roc_curves roc_curves.default roc_curves.mrmc roc_curves.stmc
Single-Reader Multi-Case ROC Analysissrmc
Single-Test (Single-Reader) Multi-Case ROC Analysisstmc
Summary Estimates and Statistical Testssummary summary.mrmc summary.stmc
Multi-reader multi-case datasetVanDyke